If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5=29
We move all terms to the left:
2x^2-5-(29)=0
We add all the numbers together, and all the variables
2x^2-34=0
a = 2; b = 0; c = -34;
Δ = b2-4ac
Δ = 02-4·2·(-34)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{17}}{2*2}=\frac{0-4\sqrt{17}}{4} =-\frac{4\sqrt{17}}{4} =-\sqrt{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{17}}{2*2}=\frac{0+4\sqrt{17}}{4} =\frac{4\sqrt{17}}{4} =\sqrt{17} $
| 2/5x-3=3/8-1/10x | | x-21=62 | | 15v=915 | | x/12-4=-9 | | 9p-8=1 | | 7n–10=25 | | b+-4.96=10.67 | | 9q+12=30 | | -30s=-930 | | x+61+63+x=72 | | m-703=148 | | j+-404=-316 | | 5m–12=48 | | x^2+(31)^2=961 | | 9(g-96)=18 | | x−9=−8x+9 | | p+85=105 | | 3x+6/7=1-x/5 | | 4(7x-1)=24 | | -152=-19y | | 16x+1=12x-35 | | 7^n^+^10-8=6 | | 2(k-3)3=12 | | 17x-5+7x=65 | | 7(s-90)=70 | | 15x-22.5=12x+22.5=+2x | | 79=23+8h | | 213425a/26133=82839 | | -6(k+85)=30 | | 3/10x-9=72 | | 7b-10b+13=5.8 | | 3-6x=5x-96 |